Transport in Carbon Nanotubes

S. DATTA and YONGQIANG XUE

Purdue University West Lafayette, IN

M. P. ANANTRAM

NASA Arnes Research Center Moffett Field, CA

MOTIVATION & OUTLINE

- Coupling between CNT and simple metals (FEG)
- Coupling between a graphene sheet and FEG
- What happens when the sheet---->strip (CNT)
- Dependence of coupling on width of strip and disorder

GRAPHENE STRIP IN UNIFORM CONTACT WITH METAL

- K_Y is conserved
- K_X conservation is relaxed due to finite width of contact area
- FEG couples better to CNT than to graphene
- Cut-off K_{Fermi} of metal is smaller than $\frac{4\pi}{3a_0}$ =1.7 Å⁻¹

COUPLING TO ARMCHAIR TUBES

$$\Psi = e^{imk_y a_0} \phi$$

m = integer and ϕ is wave func. of atoms in 1D unit cell

• E=0 at
$$K_y = \frac{2\pi}{3a_0} = 0.85 \text{ Å}^{-1}$$

• Metal with $K_{\text{Fermi}} < \frac{2\pi}{3q_0}$ couples weakly

GRAPHENE SHEET IN UNIFORM CONTACT WITH METAL

FEG

(Free Electron Gas)

For good coupling: Metal $K_{Fermi} > 4\pi/3a_0$

K-vector along plane is not conserved for most metals Poor coupling

K _{Fermi} Å ⁻¹	
Cs Ag Au Hg	0.65 1.20 1.21 1.37 1.75
0	1.7

^{*} Ashcroft & Mermin, Solid State Physics

EFFECT OF HIGHER SUBBANDS ON dI/dV VERSUS V

• S. Frank, P. Poncharal, Z. L. Wang & W. A. de Heer, Science, v.280 (1998)]

- Anantram & Govindan, Transport through carbon nanotubes with defects, Phys. Rev. B v.58 (1998);
- Compute self energy due to: (i) metal & (ii) semi-infinite CNT leads

$$T_{LM} = Tr \left[\Gamma_M G_d^r \Gamma_L G_d^a \right]$$

COUPLING TO ZIGZAG TUBES

$$\Psi = e^{imK_y \sqrt{3}a_0} \phi$$

No cut-off value of metal K_{Fermi}

LARGE DIAMETER TUBES

 Increase Transmission: Small phase coherence length in metal / disorder in metal-CNT coupling [Frank et.al, Science, v.280 (1998)]

CONCLUSIONS

- Graphene sheet; does not couple well to most simple metals (K-vector conservation; $4\pi/3a_0$)
- CNT / graphene strip: couples much better to simple metals (need for k-vector conservation along width is relaxed)
- Axial k-vector conservation is still required. Causes non trivial difference in coupling of zigzag and armchair tubes to a FEG.

ARMCHAIR ZIGZAG cut-off $\kappa_{\text{Fermi}} = 2\pi/3a_0 = 0.85 \text{Å}^{-1}$ cut-off $\kappa_{\text{Fermi}} = 0$

- Transmission increases with length of contact
- Disorder / small phase coherence length will increase transmission